ESL – Extensible Shading Language

Lewey Geselowitz
1Introduction

3ESL’s Target Audience

3Simple Example

4Language Structure

4Everything is a Property of a Class

5Modifiers and Inheritance

8Shader Graph

11Shader Stages

12Combined Objects

14The API and Feedback Compilation

15Additional Language Features

15Textures and Samplers

16Owner and Used-by Objects

17Artists Interfaces and UI Types

18Enhanced Swizzling

19Sumeach

19Misc. Notes

19Multi-Pass Rendering

20Not Just for Color

20Annotations on Output

20Render States

20floatN

21Performance and Optimization

22Shader Analysis and Automatic Optimization

23The Language Design

24Prototype

25Problems and Concerns

26Project Usage

27Conclusion

27Appendix

Note: This paper assumes the reader has a working knowledge of shader development and modern object oriented languages.

Introduction

ESL (pronounced like “easel”, the artists’ platform) is a high level shading language, with a graph based / object-oriented design intended to solve the problems of large scale shader development. It combines a clean programming language with a flexible graph structure to allow game programmers, artists and engine developers to have more control over their shaders while focusing their attention on what makes each particular material shine.

Current generation shading languages lack the kind of internal structural flexibility needed to create different versions, combinations and LODs of materials based on a material graph outline. For this many game engines and editors implement their own shader builder which takes their high level material representations and wrangles it into HLSL using specialized code. ESL replaces this complex proprietary system with a clean programmable compiler style solution which lets the developers write classes in a simple object-oriented shading language, the artists connect these objects in an intuitive fashion (or easily export them from Maya/Max), and then the game engine manages the compiler which translates these two into HLSL or another directly usable shading language. The key is an object oriented shading language with a clean high-level structure which easily compiles out so that the resulting shader is just as efficient as if written directly in HLSL without nice classes. In this way you get an extremely easy to create and evolve shader builder with tons of compiler optimizations which would takes ages to write into your own builder.

Current generation “high level” shading languages such as Microsoft’s HLSL, OpenGL’s GLSL and Nvidia’s Cg are the GPU equivalent of C in that they give a very detailed procedural definition of the entire shader. The problem with this is that the objects in modern games consist of hundred of materials, which makes writing individual shaders for each material impractical. These high level languages are high level in that they are not written in assembly, but where they are terribly low level is that the code within the shaders is fixed and cannot be moved around and manipulated in an easy and efficient manner (or at all in many cases). In fact most shaders one comes across are written in one or two large spaghetti-code “main” functions with everything all packed together. This is somewhat odd as any function calls are necessarily compiled out by the time the code hits the graphics card and would introduce no performance hit at all. ESL is designed to solve this problem of code flexibility by creating an easy to read and write high-er level shading language which takes a more meta-data than procedural approach, and because of the strong nature of a shader compiler, does all of that without taking a performance hit as one sees with standard higher level programming constructs like classes in C++, C# and so forth.

ESL itself consists of two main components: the class or node definitions (written in a custom language) and the graph structure which connects instances of these classes to create a shader. For example a main material instance might reference one or more “Light” objects, a “MyTexture” object, and so forth. Each instance has an associated class defined in the code and exists in a graph structure easily exported from a material editor. These instances are then compiled into a single shader by the ESL compiler and exported as HLSL (or possibly GLSL, C, C#, RenderMan, etc.). The generated HLSL is then compiled by DirectX and used at run-time. Because ESL compiles to these other high level languages, it can lean on their extremely good low-level device specific optimizations, making implementation of the compiler a lot more practical than compiler targeting assembly. The advantage of all of this is that even once the material graph structure has been setup by the artists or game programmers, the inherently object-oriented and modular structure of the data means that it can be compiled in numerous different ways and reorganized with little effort by the game engine or content pipeline. In other words this graph represents the intent of the artist, not necessarily the execution and thus the engine programmers can have control of the shaders produced while at the same time giving the artists and game team the materials they decided on.

ESL is not a completely new and different way to write shaders; rather it is just a better way to organize the code in the shaders (just as C++ classes organized C code). The actual code you’ll be writing will be relativity the same and using all the same C-family syntax you are used to will be present (with a few additions based mostly on C# and HLSL).

The shading language itself also includes numerous advanced features
· Easy to understand and efficient model to separate the shader stages (i.e. the connections between the pre-, vertex- and pixel- shaders).

· Object “modifiers” combine the features of interfaces, multiple inheritance and abstract classes letting you inherit from and change classes that haven’t been defined yet.
· A clean input specification to allow for more powerful and flexible content creation tools, without applying assumptions like lighting models.
· Final compiled shader has roughly the same performance as if hand written in HLSL.

ESL’s Target Audience
For game graphics programmers, ESL provides a simple and elegant shading language which lets them focus on creating reusable classes which can be procedurally transformed in a number of different ways and which will require less maintenance.
For graphic artists, ESL means they can easily create complex shaders by combining individual components in a simple and consistent fashion, giving you more control over how each material appears (similar to the “material graph” in Maya). The artist’s perspective on ESL should be that everything they like in material graphs is now very easy to add to the game.
For engine programmers, ESL means that the shaders written by the game programmers and setup by the artists are not just static and can be adapted and restructured as needed. This should greatly simplify performance exploration as refactoring the shaders is a simple matter of adding a few modifiers to all materials at build time rather than rewriting each of them. Also note that performance has always been a primary goal of ESL and I firmly believe that ESL will provide you with the tools you need to push the hardware to its fullest, see the “Performance and Optimization” section.
For smaller teams, academic or hobbyist developers, ESL provides a much simpler language than what is currently available and allows you to focus on the problem at hand and easily reuse or refactor components from the web or other sources.
Simple Example

Before diving into the language structure I always feel a quick example is a good starting point. Below is a simple flat color shader (the graphical equivalent of a Hello World program).

class HelloShader adds IMaterial

<description="A very simple shader.">

{

app float4x4 ProjMatrix : PROJECTION_MATRIX;

user attrib float4 RawPosition : POSITION <uitype="position_model">;

user float4 AmbientColor <uitype="color">;

float4 ProjectedPosition = mul(RawPosition, ProjMatrix);

override float4 FinalPosition = ProjectedPosition;

override float4 FinalColor = AmbientColor;

}

All example code in this document (unless otherwise noted) works in the prototype so please feel free to try it out and play with it. Also see the examples page for screen shots, more code and to see the compiled HLSL files. This class can also be found in the MyShader.esl example classes.

Note that this is a class just as in any other object oriented language. The “adds IMaterial” means than this class implements the IMaterial interface which the compiler uses to create HLSL shaders (more on “adds” and modifiers later). Annotations in ESL work in much the same way as HLSL, except that if no type if given, “string” is assumed. The “description” annotation is used by the ESL Designer as a sort of tool-tip. The first property is declaring an application supplied matrix bound to the target property “PROJECTION_MATRIX”. The second property defines an attribute (means a per-vertex value) bound to the “POSITION”, and the third line declares a color. An equivalent but not as clean way is to specify the source “channel” for a property is with an annotation like so: “user attrib float4 RawPosition <channel="POSITION">;”. The “user” keyword means that these two values are supplied on a per-material basis, for example two instance of this class will require two separate values for “AmbientColor” and “RawPosition”, but the application wide “ModelProjMatrix” will be shared between them.

Finally, the IMaterial interface defines (among other things) two abstract properties FinalColor and FinalPosition which must be implemented for this object to be compiled as a shader. The “override” keyword has the same meaning as in C#, and I think helps make inheritance easier to manage and maintain (as opposed to C++ or Java where you override the base implementation of a virtual function implicitly by naming it the same thing and having the same arguments). As you can see it just multiplies the position by the projection matrix to get the final position, and gives the AmbientColor as the final color. It should be noted that ESL also includes a few simplifying conventions when it comes to procedural properties: FinalPosition has a “()” after it to indicate that it takes no arguments, if this is left out (as in FinalColor) it is just assumed that it takes no arguments. The same is true of calling a property, for instance you could write “RawPosition()” (and that works), but because that property takes no arguments you can just drop the “()” and call it like a property in C#. Also instead of writing “{ return XXX; }”, you can just write “= XXX;”, the rational for this, other than just being shorter, is given later. In short the two declarations are really equivalent (other than the code in them).
Language Structure

This section will cover the language structure, reasoning and syntax. This is of course not a complete definition of the ESL language, but rather highlights the key additional features ESL places over other modern high level languages. Standard C-family conventions like “if”, “while”, and so forth are of course fully valid within ESL, also all HLSL intrinsic functions can used.
Everything is a Property of a Class
Object oriented programming has proven itself as an excellent model that is easy to understand, use and build upon. For this reason ESL is built around classes, each of which can have any number of “properties” which are sort of like functions. There are two main types of properties: inputs and procedural values. Inputs are things like “app float4x4 ModelViewMatrix;” which defines the model view matrix and procedural properties are functions which draw on other properties to generate a value like “float3 Normal = mul(RawNormal, float3x3(ModelViewMatrix));”. Each property has a name, return type, list of arguments (which was empty in the previous two examples) and optionally attributes, annotations and/or code. When inheriting and overriding, it is fully allowed to override a procedural property with an input or vice-versa (for instance, you may want to override a procedural diffuse lighting factor with a constant color for lower LODs, or override a vertex color with that color multiplied by a texture for higher LODs). This uniform property system allows quite a lot of flexibility. The default in ESL is that all properties are “virtual” (and thus override-able) unless marked with “sealed” or “private”; this differs somewhat from the C# standard where “virtual” is required, my reasoning is that I want the developer to create properties almost as they would local variables, this gives the most meta-data to the compiler and helps with extensibility. Anders Hejlsberg, the lead C# architect, explains in this great article why C# defaults to non-virtual and I completely agree, but ESL has a different audience and purpose.
All properties are read-only, this greatly simplifies the whole system and makes removing the object structure much easier at compile time. It also causes inheritance and working with the shader graph to be much more predictable and thus much simpler to optimize. Local variables declared within properties are of course write-able. Classes don’t have any member variables, as everything is either a shader input or is procedurally defined. This means that there are no constructors in ESL, the closest thing is that inputs can define default values or give annotations as to how they are to set in a modeling tool.
The standard object-oriented stuff is there too: all objects inherit from “object” except intrinsic types like “float3” and so forth. “object” doesn’t include anything of note (so no “ToString”). To compile to HLSL the root class must inherit from the IMaterial modifier.
Modifiers and Inheritance
ESL classes support normal inheritance as would be expected, the only item of note is the requirement of the “override” keyword and the default to “virtual”. “private” properties are not accessible from derived classes, “sealed” properties cannot be overridden and so forth. The current syntax is to use either the “extends” keyword or the symbol “:” so the following are equivalent “class B extends A {}” or “class B : A {}”. And of course the “base” property can be used to access the version of a property you are currently overriding (like “super” in Java). ESL currently only supports calling “base” on the property currently being overwritten, so you cannot have “float foo = 1 + base.bar;” only “float foo = 1 + base.foo;”.
Modifiers are a combination of multiple inheritance, interfaces and abstract classes. Think of C# or Java interfaces, except that you can put code in them as well. This allows you to add layers of additional properties on top of your current base class, or in a different sense allows you to sub-class classes which haven’t been defined yet. Below is a short example:

class A {

float Value = 6;

}

modifier Half extends A {

override float Value = base.Value / 2;

}

class B extends A {

override float Value = base.Value + 4;

}

class C extends B adds Half {

override float Value = base.Value - 3;

//Value = (((6) + 4) / 2) - 3 = 2;

}
In the example “Half” is a modifier which modifies any class that extends A (i.e. Half itself does not derive from A, it can only modify classes which do). C derives from B which derives from A and thus can have the “Half” modifier applied to itself. The order of overriding is to start with any properties defined in the current class, then check it’s modifiers, then check it’s base class. Multiple modifiers are allowed, however they are stacked so that there are no issues of multiple inheritance. This can be seen in the example below which follows from the above:
modifier AddOne extends A {

override float Value = base.Value + 1;

}

class D extends A adds Half, AddOne {

//Value = ((6) / 2) + 1 = 4

}
The code “adds Half, AddOne” should be read as “modify with Half, then modify with AddOne” stacking the overrides over each other. Of course modifiers need not call their base implementations, or even override anything for that matter; they could simply add definitions for later use (like interfaces). One of the common modifiers I use allows you to tile texture coordinates:

modifier ScaledUV extends UVTransform

<description="Lets you scale the UV coordinates and add an offset.">

{

user IValue UScale;

user IValue VScale;

user IValue UOffset;

user IValue VOffset;

override float2 Transform(float2 coord)

{

float2 scale = float2(UScale.Value, VScale.Value);

float2 offset = float2(UOffset.Value, VOffset.Value);

return coord * scale + offset;

}

}

The classes “UVTransform” and “IValue” can be found in the MyShader.esl example classes. This modifier declares a few properties to describe how the UV is scaled and offset, and then uses these values in the Transform function which inherited from UVTransform.
The purpose of modifiers is to simplify the process of inheritance and make it easier for the shader graph to be created by artists and modified by the game engine. For one thing is there is far less need to “burn a base class” as any kind of properties can be added by modifiers. They are critical to allowing the engine developers to manipulate the shader code at content build time, because they allow you to change and modify classes which haven’t even been written yet. Once the game developers have agreed on a few base material classes, they can develop numerous classes on top of those, which can then be modified by the engine developers to meet different needs. For instance something like this pseudo-code:
//Shared between game and engine:

class GameShader

{

//Supplied by engine:

abstract float3 Normal; //and more stuff...

//Calculated by game based on the above:

abstract float4 Diffuse;

abstract float4 Specular;

abstract float4 Ambient;

}

//Used by engine:

modifier Eng_PrePass extends GameShader adds IMaterial {

override float4 FinalColor = (0).xxxx;

override float4 FinalPosition = ProjectedPos;

}

modifier Eng_LowLOD adds Eng_PrePass {

override float4 FinalColor = Ambient;

}

modifier Eng_MidLOD adds Eng_PrePass {

user attrib float3 RawNormal : NORMAL;

override float3 Normal = mul(RawNormal, ModelView);

override float4 FinalColor = Ambient + Diffuse;

}

modifier Eng_HighLOD adds Eng_PrePass {

override float3 Normal = Bump_Mapping_Result;

override float4 FinalColor = AmbientColor +

DiffuseColor + SpecularColor;

}
Game developers would derive from “GameShader” to make the materials in the game, and the “Eng_*” modifiers would be applied over the game objects to create the different shaders needed at content build time. The pre-pass shader (Eng_PrePass) is just the shape without any color (“(0).xxxx” is the value zero swizzled out into a float4), the low LOD is just the ambient color, the mid LOD uses a per-vertex normal to do diffuse lighting, and the high LOD uses bump-mapping. Presumably any classes derived from GameShader use the “Normal” property to calculate the diffuse and specular lighting, so changing it here will affect all of the lighting code. This example is meant to indicate the kind of structure that can be easily setup and built upon so that the engine developers get control over a logically separated material, while the game programmers can go wild and create one really cool shader which can then be adapted. Obviously a real world example would be more complex but I believe the principal is sound.
On a syntactical note, you’ll notice that the “Eng_PrePass” modifier extends GameShader and adds IMaterial, this means that Eng_PrePass can only modify classes derived from GameShader, and that it itself is modified by the IMaterial modifier. This means that adding the Eng_PrePass modifier is actually like adding IMaterial and then the contents of Eng_PrePass. The other Eng_ modifiers add PrePass meaning that it is then like adding IMaterial, Eng_PrePass and then their own content. Also because each of these modifiers uses Eng_PrePass which is required to derive from GameShader, each of these modifiers can then only modify classes derived from GameShader. If someone has a better syntax for expressing that, I’m all ears, but I believe it’s easier to use than explain.
Shader Graph

It’s only been lightly touched upon but the classes defined in the ESL code are not used in the usual sense of classes but rather are “node types” in a shader graph. Tools such as Maya’s material graph, or similar tools for 3ds Max and UnrealEd are quite popular now-a-days and provide a very artist friendly interface for creating shaders. Essentially you can create a collection of inputs (such as textures and colors) and filters (such as color combiners) which define the material. Currently it is up to the engine to take this graph and create a shader to match it, which is a fairly complicated process and is exactly what ESL was designed to do. ESL is in a very real sense a language designed specifically to do this, by taking the process to a rationally abstract form and creating a language well suited to representing the individual nodes and how they connect to each other. Ideally I see game exporters writing out the shader graphs found in these editors into ESL’s XML based graph format, and then using the ESL compiler to generate their game shaders. The game developer would then be responsible for writing the ESL game-specific classes which map to each of the nodes found in the material editor (or just use a standard set of classes).

Getting back to the language, it is may have been noted but there is no “main” function in ESL, and there is in fact no “new” operator either (it is reserved however). This is because the setup of the shader graph is done through the compiler API rather than in the language itself (or can be defined in XML). Once the source code for the classes has been loaded by the compiler, the API can be used to create instances of which ever classes are needed and then combines them into a graph; it is this graph which is then compiled into a shader. The command line compiler handles this process through an XML definition of the shader graph. Here is the ESL to define the classes in our simple shader (note: it uses the HelloShader example from before, which can also be found in the Appendix).

modifier ILight {

//Gives the contribution of this light:

abstract float4 Contrib;

}

class AmbientLight adds ILight {

user float4 Color;

override float4 Contrib = Color;

}

class MyMat extends HelloShader {

app Light TheLight;

override float4 FinalColor = AmbientColor + TheLight.Contrib;

}

And here is the shader graph in XML:

<material compile="mymain" >

<inst type="AmbientLight" name="mylight" />

<inst type="MyMat" name="mymain">

<setinst member="TheLight" inst="mylight" />

</inst>

</material>

The first “inst” (or “instance of a graph node”), is the light and it’s “name” is used to identify itself within the XML file. The second instance is the one to be compiled, notice that it sets it’s “TheLight” property to the “mylight” node, if this was not done the compiler would throw and error that the property must be defined at compile time. Keep in mind that all constructs such as function calls must be compiled away by the time the code hits the graphics card, and so all object references and other abstractions must be compiled out by ESL before it gets to HLSL. This example generates a shader which just adds two values (the lights color and the materials ambient color), the “object deference overhead” is compiled out by ESL.

The classes required to recreate a material graph from something like Maya would be a little more complex but would have the same basic structure. A short example follows.

modifier IColor {

abstract float4 Color;

}

class FlatColor adds IColor {

override user float4 Color;

}

class TexturedColor adds IColor {

texture float4 Tex(float2 c);

user attrib float2 TexCoord;

override float4 Color = Tex(TexCoord);

}

class BlendColors adds IColor {

user IColor One;

user IColor Two;

float4 Combine(float4 a, float4 b) = a * b;

override float4 Color = Combine(One.Color, Two.Color);

}

class AddColors extends BlendColors {

override float4 Combine(float4 a, float4 b) = a + b;

}

class ColoredMat extends HelloShader {

user IColor MyColor;

override float4 FinalColor = MyColor.Color;

}

For a more complete example, see the MyShader.esl example classes. A simple shader graph would then look like:

<material>

<inst type="FlatColor" name="fc" />

<inst type="TexturedColor" name="tc">

<setchannel member="TexCoord" channel="TEXCOORD0" />

<setchannel member="Tex" channel="TEXTURE0" />

</inst>

<inst type="AddColors" name="ac">

<setinst member="One" inst="fc" />

<setinst member="Two" inst="tc" />

</inst>

<inst type="ColoredMat" compile="true">

<setinst member="MyColor" inst="ac" />

</inst>

</material>

Which is the long way of writing: ColoredMat(AddColors(FlatColor, TexturedColor)). Exporting to this XML format lets you far more easily generate any number of shaders by combining the individual pieces and it a lot less work than writing all the combinations “by hand”. Note that any “attrib” (i.e. vertex attribute) properties have to have an input channel associated with them (either: position, normal or texcoord*). This input channel can either be hard coded into the ESL code (as position and normal usually are), or left to be set in the artists UI. You may also notice the lack of a “tex2D” or similar texture sampling function, this will be explained later in the “Textures and Samplers” section (the “channel” set on the Tex property just adds the TEXTURE0 semantic to the HLSL so that it can be more easily identified by the application).

It’s doubtful that anyone will ever actually write this XML code; instead it will be generated by content export tools or the ESL Designer. The ESL Designer is more of a code testing tool but it provides a visual graph editor based directly on your ESL code, and lets you quickly and easily create a compliable shader graph, and export it to a .fx file (an example FxViewer app is included with the ESL download). More information, screenshots and whatnot can be found on the ESL homepage.

Requiring artist input at compile time also allows for the very cool concept of fixed properties, which are values specified by the artists and know at compile time to never change. HLSL has “uniform” function parameters which are compiled directly into the shader (things like “is there is a light”), and this allows you to create different versions of a shader using the same code (usually done in “technique” definitions). That is great but ESL takes it a step easier by making it simply an attribute you can tack onto any property. For example:

class FixedColor adds IColor {

fixed user float4 FixColor;

override float4 Color = FixColor;

}

The above is based on the previous example, and now this item is placed into the XML instead of the previous first line:

<inst type="FixedColor" name="fc">

<setfloat member="FixColor" value="0,0,0,0" />

</inst>

The result is that the zero-vector will be hard coded into the shader source any instructions related to it can then be compiled down or out (so “Color*Diffuse” would become simply the zero vector). Normally “constant” inputs can be changed between batches and presumably the material editor will support real-time update of those, however changing a fixed value will require a recompile and I assume most interfaces will simply have a “recompile” button somewhere. Object references are of course also fixed and require recompiles if changed.

One last item to mention is that you can also create additional types in the shader graph using modifiers. Here is a simple example:

<inst extends="MyShader" adds="PerPixelNormals" name="main" />

So for each node instance you can put an “extends=” and “adds=” attribute instead of “type=”. Internally a new class will be created which extends Std, and adds the PerPixelNormals modifier, the node will then be created based on this new class.

Shader Stages

Current generation languages create a huge divide between the pixel and vertex shaders, and understandably so because there is a big separation at the hardware level. From a high level perspective however, and especially with modern uniform hardware, the divide is important and must be controlled, but need not interfere with every aspect of shader development. There is a large amount of code which needn’t worry itself with where it is executing, and not forcing it either way allows us to write much cleaner and more modular code. I have seen numerous examples where code is put into one shader over the other just because it is easier to write it that way, and it is at times like that you know a higher level language is needed.

Pre-shaders in modern languages implicitly pull code out of the shader and execute it on the CPU when there are no dependencies on vertex attributes. ESL takes this idea and extends it throughout the language from compile time to pre-shader to vertex and pixel shaders. For instance, consider the engine LOD example from the section on modifiers. The MidLOD modifier used a vertex attribute to calculate the Normal, which was then presumably used by the game code to calculate the diffuse color; this would mean that the game lighting code will now run in the vertex shader. The HighLOD modifier used bump-mapping which presumably sampled a texture in the pixel shader, and because the lighting code is dependant on this Normal value, it will then be pushed into the pixel shader. In this way, it becomes fairly obvious to the compiler in the evaluation tree where the bridge between the pixel and vertex shaders must exist and an appropriate structure is created to pass the data between the two. Obviously there are also some optimizations done to reduce the number of shared attributes (such as smaller than float4 vectors are packed together). Compilers are good at this sort of easily definable tree optimization.

Shader stage is specified in ESL as a property attribute. Constants default to the CPU- or Pre-shader; vertex attributes are forced into the vertex shader; and texture sampling defaults to the pixel shader but can be assigned to the vertex shader. Here is a simple example of using shader stage control in ESL:

attrib float3 RawNormal : NORMAL;

float3 Normal = mul(RawNormal, float3x3(ModelViewMatrix));

pshader float3 UnitNormal = normalize(Normal);

RawNormal is the vertex attribute, Normal is the world space normal and UnitNormal is the normal guaranteed to always be of length 1. “Normal” is presumably calculated in the vertex shader as it relies on a vertex shader property and it has no need to be in the pixel shader. By putting the “pshader” attribute on UnitNormal the compiler pushes any instructions in the function into the pixel shader, which in this case is just the normalize operation. The Normal property runs at the vertex shader level while UnitNormal must execute in the pixel shader so the compiler will generate a vertex shader output to pass it across. The compiler tries to push as much code as possible to the lower stages based on it’s inputs. Any lighting code using the UnitNormal will now be moved into the pixel shader, and will give nice clean round looking normals. The process is relatively simple when you think about it, and means that the separation between the stages can be controlled but need not interfere with the rest of the shader.

ESL supports the following stage specifiers: “pshader”, “vshader”, “const” and “fixed”; referring to the pixel shader, vertex shader, pre-shader and compile time “shader” respectively. Just to be safe you can use the keywords “cshader” and “fshader” in place of “const” and “fixed” respectively. The “fixed” shader is also handy to ensure that things like high level object logic is compiled out of the shader entirely.
Combined Objects

Note: the following has not been fully implemented in the prototype yet; but I’m working on it, and its damn cool stuff and a cornerstone of ESL.

One of, if not the, primary issue I see facing shader development today is the explosion of materials. With games getting more and more graphically detailed and shader graph tools making it easier and easier to make shaders, engine developers are left with hundreds of materials which all need to run next to each other and run quickly. The problem is that as graphics pipelines have gotten deeper and broader, the relative cost of switching between materials has grown tremendously.
The solution is to create one shader which implements numerous materials; in ESL this is referred to as a combined object and is a fundamental language feature. Most large scale shader builders and engines perform a sort of code comparison using tree matching routines on their own internal material graph structure to determine the optimal tree which represents all possible materials. This is difficult and error prone, as there are innumerous ways to program the same thing. ESL does a similar operation, however the process is infinitely simpler because the code itself is organized in a more object oriented manner and matching up similarly purposed code paths is easy because they are derived from the same code. For instance, while the shader is being compiled, if two combined instances reference the same property then that property is used for both, and if it is different then an interpolator is put in between them, leveraging shared code. Because the shaders are written in an object oriented environment, the shader author would actually have to go out of their way to implement the same thing in two different ways rather than just using the inherited version. Thus, different shaders derived from the same base classes are much more likely to share most of their code and thus be easily combined. Consider multiplying the model position by the modelview matrix; in an object oriented environment there would be one function which does this and there would be no need to change or override it, all instances would share that code and no combining would be needed. On the other hand, using shader instructions or an evaluation tree to work out if two different shaders are calculating the world position that way is a complex and easily fooled tree walking operation. Because the ESL compiler has full control over how the shader is expressed in the compiled HLSL, it can easily rewrite or reorganize any portions of code for better combination. In short, ESL provides an easier platform for shader combination because the code itself is more logically organized and the compiler has more control over what is going on.
Additionally ESL allows you to specify on any input whether it is unique for any particular instance (“user”) or shared with the rest of the application (“app”). This allows the combing process to easily understand that the modelview matrix referenced from two instances of a class is the same, while the user defined diffuse color is unique and two separate constants are needed with an interpolator between them when they are used.
When two or more instances are combined, you can also specify any number of modifiers which are applied over their combination. For instance in the GameShader example presumably there would be a couple of different material instances derived from GameShader (such as SkinShader, JacketShader, HelmetShader and so on) which you want to combined into one shader used to represent the whole Biker (so as to draw him in one batch). The Eng_ modifiers would be applied over this combination to create different shaders for each LOD. These modifiers make it particularly easy to combine the objects for targets such as the pre-pass, because all the differences in the instances are relating to color. It is logical that at low LODs there are no differences between shiny and matte materials; and thus it shouldn’t cost anything to combine them into a single shader. As the LOD raises and more differences appear, things like the position calculation stay the same and the code is shared but there are a few extra instructions added to interpolate between the different material colors. A slight performance hit is taken, but probably less than changing the shader between each object in the scene, or trying to hand write and maintain all the different possible combinations of materials in your game.

The “switcher” which interpolates between different values based on which material is currently being rendered is also left up to the developer, and is usually either done with a constant or a vertex attribute. When objects are combined, the compiler implicitly adds the “ICombined” interface given below:

modifier ICombined

{

extern object[] CombinedObjects;

abstract float CombineFactor(object[] zeros, object[] ones);

}

Internally it fills the CombinedObjects array with all the objects it is combining, and then calls the CombineFactor method to interpolate between differing instances. It is up to the developer to add additional modifiers or derived classes which implement CombineFactor. CombineFactor is passed two arrays, if any of the objects in the “ones” array are currently active, then the function should return 1 and otherwise 0. Keep in mind that passing arrays, calling functions and so forth are some of those things which are compiled out. Here is one possible implementation:
modifier CombineByIndex extends ICombined

{

app int CombineIndex;

float CombineWeight(object ob)

= float(CombinedObjects.IndexOf(ob) == CombineIndex);

override float CombineFactor(object[] zeros, object[] ones)

= sumeach(CombineWeight(value) in ones);

}
At run time the application will set CombineIndex to whatever the index of the material it wants to draw is, and then the CombineWeight functions returns 1 only if the given object is the currently selected one. CombineFactor just sums the weights of each of the materials in the ones array. If you think about it, you’ll realize that this will compile to a pre-shader which just adds a few compares (0==CombineIndex)+(1==CombineIndex) and so forth (because the IndexOf is evaluated at compile time). This eventually reduces to a single constant in the actual shader.
The way CombineFactor is used internally is fairly simple and generally falls into one of two methods. The first is to use branching (“if” statements) to execute only the code that is needed, and the second is to evaluate all code paths and lerp between the results. Consider that you are combining four instances and you get to a property on which they differ (say two of them have additional modifiers), this means that two of them do it one way (wayAB), one does it a second way (wayC) and the forth does it a third way (wayD). The solution is to do it all three ways and then lerp the results together using the CombineFactor; something like this:
lerp(wayAB,

lerp(wayC, wayD, CombineFactor({C}, {D})),

CombineFactor({A,B}, {C,D}))
This amounts to two additional instructions. As a quick reminder: lerp(x, y, s) = x + s*(y-x). Oh and obviously the compiler swizzles out the CombineFactor to a float4, or whatever is required.
In this way the compiler can give the programmer fairly detailed control over how the objects are combined and they don’t have to worry about writing all possible shader combinations. This technique does however do much better when the shader is written correctly and relies on inheritance as much as possible. But then again any procedurally defined combining system does better under uniformity, the difference being the way the ESL combiner works is simple and predicable enough for developers to understand how it works and write code which harnesses it rather than trying not to confuse it.
Alternative implementations of CombineFactor could use a vertex attribute or some fancier math to allow multiple materials without having to change a constant. Or on more modern hardware the vertex index could be used. Internally the compiler chooses between lerping the results, branching to select them or using register addressing.
NOTE: This whole document, and especially this section are still in the prototype stage and changes and recommendations are very much appreciated. For instance the latest version of the compiler uses a Boolean compile factor instead of a floating point one.

The API and Feedback Compilation

The compiler was designed to be used as either a command line tool, linked too directly, or even used as a runtime shader management system. Mostly I presume it will be used as a separate command line tool, but it could definitely be linked to at build time and used for feedback compilation. It is my belief that modern engines will want to compile a shader, analyze what it does, and possible make changes and recompile it until it is satisfied. A simple example would be sharing textures using UV cropping. As materials are getting more and more complex they are sampling numerous texture, and combined shaders may be sampling numerous textures for each instance. The thought then is that the engine would look at all the textures being sampled, and which instances are sampling them, and decide to combine a few of them into one larger texture and insert UV cropping code into the texture sampler to simulate a smaller texture out of a larger one. For instance, imagine four combined materials each sampling a different texture, why not put all four into one texture and add some extra UV cropping instructions, this will add only a few more arithmetic instructions but would save three texture slots and three texture lookups. There is an example of doing this in the ESL examples page.

Additionally, an engine could detect which materials combine the most efficiently and put those into their own batch. In this way, it would automatically detect to batch things like normal-mapped and non-normal mapped materials into separate shaders without even having explicit knowledge of what that means.

The point is that ESL, because it allows the code to be manipulated, need not have compilation as a single step, but can rather make it an interactive process of growing the right shaders and combinations to suit all of the engine’s needs.

Additional Language Features
This is a short list of smaller features which I feel are worthy of note, but not really definitive of the language.

Textures and Samplers

In keeping with the principal of “everything is a property”, textures are defined as properties just like anything else, and are designed so that it is easy to override them with procedural properties (or vice-versa). The TexturedColor class from before is a good example of how textures work:
class TexturedColor adds IColor {

texture float4 Tex(float2 c);

user attrib float2 TexCoord;

override float4 Color = Tex(TexCoord);

}

A texture property must simply take a single floatN argument, return a floatN value, and have the “texture” property. Because properties only apply to a specific property declaration, you can override this texture with a procedural value in a derived class or with a modifier. Also note that there is no direct correspondence between the texture coordinate and the texture, it is up to the shader developer to make this connection.

Whenever a texture is declared and used as in the above, it implicitly creates and uses it’s own default sampler. Additional samplers which sample the same texture can be defined as such:

texture float4 Tex(float2 c);

sampler float4 ClampedTex(float2 c) <AddressU="clamp" AddressV="clamp">

= Tex(c);

ESL will respect the UV annotations on a sampler even if what it is sampling is no longer a texture. Of course in the case of a texture it will simply set these in the sampler_state, however if the sampler is referencing a procedural property, then it will simulate these restrictions using the clamp, fmod and related functions. In this way, ESL “samplers” are the general mechanism by which you restrict the domain of a texture-like property. The reasoning for this is so that you can write samplers which reference textures, and then replace the texture with a procedural function and have it work in the same way. Also note that when creating the default sampler for a texture, the same annotations are applicable (i.e. what works on a “sampler” property also works on a “texture” property).

Cubic textures can be declared with the “CUBE” keyword right before “texture” or “sampler”. Here is a declaration of the cubic texture in ESL:

user CUBE texture float4 Sample(float3 coord);

I haven’t done it yet but I will be introducing additional annotations which can be used for UV cropping so that large textures can simulate multiple smaller textures, right now you will have to write your own code (such as the CroppedUV modifier in the MyShader.esl example classes) to do this, but with the cropping in place it will be easier to pull tricks like that at the engine level and especially at content build time.
Owner and Used-by Objects

Because ESL is an inherently graph oriented language, it has some features to support complex graph interactions not usually supported at the language level. Most languages allow you to access your own child objects (obviously), but there is no way to access those objects which you belong to or are used by. This is supported in ESL through “usedby” objects. In the class declaration you are able to specify a number of objects which must exist in the shader graph above you; these objects can then be referenced from within your code. By “above” what is meant is whenever an instance makes a reference to a another instance, the referenced object notes the referencing object as one of it’s owners. The compiler will climb this chain of owners to find the first object which inherits from the specified type. Here is a simple example based on the MyShader example classes:
class Test_ViewNormal adds IColor usedby MyShader

<description="Visualizes the normal as a color. Reverses the Z direction for convenience.">

{

override float4 Color = (MyShader.Normal * float3(1,1,-1)).xyz0;

}

All that is required is to add the “usedby” keyword with a comma separate list of classes or modifiers it is to be used by. Then to access the owning instance just use the class name. This may seem a little unneeded but consider a situation where something like a projected texture needs to know the position of the current vertex, rather than recreating the position you can simply mark that it needs to be used by something with a position and then access it that way. This system should clear up the object tree by overcoming some of the differences between a child object and a derived class. Also the usedby restriction can be easily spotted at shader design time or compile time.

Artists Interfaces and UI Types

Modern shaders aren’t really written by programmers any more, but rather are strung together by artists in material editors and then compiled by game engines. While ESL was designed to be a good intermediate, to export the materials as ESL shader graphs an then use it’s compiler, it was also designed with the possibility of an ESL specific material editor. Considering that the class definitions give you all the information you need, it would be easy to create a material editor which lets you pick which instances you want to plug into each of the inputs of your materials. For example the main UI would require you select a class which is derived from IMaterial, this would bring up a list of possible classes, you pick one, it then offers you to add any modifiers over that and you can do so. Once you have selected this main material, it will presumably make references to other properties such as colors in the form of IColor, again the UI will present you will now a different list of classes which implement IColor.

This has been done in the ESL Designer, which is an easy to use visual editor for building ESL graphs based on the classes in an ESL file. More information and the download can be found on the ESL homepage. Due to time constraints and general practicality, the ESL Designer is not a full material editor, rather it only lets you specify those ESL properties which must be known at compile time. I generally use it for development to try out different ideas, but artists will generally use professional material editors and then export to the XML based graph format.

The point is that ESL provides a nice clean graph mechanism with type-checking, and the modifiers system allows you to create new classes at edit time by using different combinations of modifiers. Then when it comes to setting the properties of the material, a few simple annotations like “uitype=color” or “uitype=position_world” can tell the interface how to specify the values for those properties. Concepts such as lights can be created entirely within the context of your particular shader. There is no standard ESL model for lights (unlike some other shader standards out there), because I feel it a very personal thing for each game; but such a model can be easily built up using input types like “uitype=position_world”, “uitype=direction_world” and so forth, which are general enough properties that they can be easily visualized and manipulated in the full editor and their meanings can be entirely created within the shader. Here is a simple pseudo-ish example:

class DirectionalLight {

user float3 Direction <uitype="direction_world">;

user float4 Color <uitype="color">;

float3 UnitDirection = normalize(Direction);

}

class PointLight extends DirectionalLight usedby Std {

user float3 Position <uitype="position_world">;

override float3 Direction = Position - Std.Position;

}

modifier ProjectedLight extends DirectionalLight {

texture float4 Tex(float2 c)

<AddressU="clamp" AddressV="clamp">;

user float3 XAxis <uitype="direction_world">;

user float3 YAxis <uitype="direction_world">;

float3 ZAxis = cross(XAxis, YAxis);

float2 XYCoord = float2(dot(UnitDirection, XAxis),

dot(UnitDirection, YAxis));

float2 TexCoord = XYCoord / min(0, dot(UnitDirection, ZAxis));

override float4 Color = Tex(TexCoord + (0.5).xx);

}
For the real implementation of this, see the “ProjectedTextureLight” class in the MyShader.esl example classes. The base material object would probably have an array of these light objects which it would then use in it’s lighting calculations. As you can see the PointLight replaces the directional vector with a vector between the light and the current vertex position. The projected light is a little more complex, it defines three axis and as the direction changes (i.e. as the vertex position relative to the light position changes) it dots that direction with the x direction to calculate the x coordinate of where to sample the texture, and does the same for the y coordinate. The z is a little different because it scales the xy coordinate up by how far the point is in the positive Z direction, this gives the impression of the projected texture expanding out of a point. The clamping of the texture is so that it only shows up within the projected volume and doesn’t repeat itself endlessly, oh and the “+ (0.5).xx” just centers the origin to the center of the texture by adding 0.5 to the x and y coordinates. This would work well for a textured spotlight or such with a row of black pixels around the edge.
The point of all of that is two fold: firstly it shows how ESL can be used in an editor not just to set properties but to actually build entirely new shader combinations, and second it shows how a moderately complex lighting model can be created in relatively few lines of code and with it’s structure completely defined within the shading language.
Enhanced Swizzling

This is just something that I personally like. First of all, doing a swizzle like “.xy” should return a float2, and the trailing “yy” should never be assumed. Especially in ESL where the borders between the different shader stages are not explicitly defined, it is always a good idea to use the least number of float slots as you can so that the compiler can pack multiple values into a single float4 for moving between the vertex and pixel shader.

Secondly, I often find myself wanting to do something like set the w component of a vector to 0, or set the first three components to 1, for that reason ESL supports 0 and 1 as valid swizzle identifiers, so you can do stuff like:

(2).xx01 = 2,2,0,1

color.rgb0 = color.r, color.g, color.b, 0

(alpha).111a = 1, 1, 1, alpha

I find that to be very convenient, and saves having to write overly large blocks like “float4(color.r, color.g, color.b, 0)” to do something which could be expressed in far less code. Of course this is compiled into a “float4” declaration like the above before it gets to HLSL. Note that this does allow you to use a 0 or 1 as the first character in a swizzle operation, which makes it harder on the C-family tokenizer, but it’s only after a “.” So I figure “.0x00” will never be considered a hex number rather than a swizzle.
Sumeach

The “foreach” keyword is a great little tool and really helps when going through collections, and so ESL supports it. However if you are doing the somewhat common operation in ESL of summing a bunch of properties you get something that looks like this:

float4 SumLights

{

float4 sum = (0).xxxx;

foreach (ILight el in Lights)

{

sum += el.Contrib;

}

return sum;

}

Which is not bad, and it beats using a “for” statement, but surely such a simple operation could be expressed more concisely. For that I use the “sumeach” statement which has a syntax like this “sumeach(EXPRESSION in COLLECTION)” and sums up the results of the expressions for each value in the collection, and returns the result. The expression can use the “value” property to access the current item in the collection:

float4 SumLights = sumeach(value.Contrib in Lights);

I believe this is much simpler and focuses on what is important. To answer the obvious question, if the list if empty the expression is checked to find it’s return type and a zero vector of that type is put in it’s place. Also keep in mind that constructs such as arrays are all compiled away so the above compiles to exactly the same thing as writing out the sum of each of the items in the list. The only final difference between this and the foreach way is that this way uses “+” instead of “+=”, thus giving more flexibility and gets rid of the “= (0).xxxx;” initialization; although that would probably be compiled away anyway.

Misc. Notes

There are just a few issues which I felt where worthy of mention, but which are not really language features.

Multi-Pass Rendering

Unlike the FX framework, ESL doesn’t support any language level system for multiple pass rendering, this is on purpose. Obviously multi-pass rendering is a big part of rendering; however I believe it is somewhat of an application specific system, requires game code and shader code to work together, and that there really isn’t a need for “generic” passes. For instance you may want to separate out the specular rendering so that you can render that to a low-res texture, blur it and lay it over the standard color to get a secular bloom effect. Obviously this requires application level code to manage the textures and such; and so I don’t think it should be a part of the shader language. To implement this in ESL you would create a base material type which has procedural properties for standard color and specular separately, then you would use two separate modifiers, one which outputs just the normal color and one which outputs just the specular, in this way you can easily create the different shaders you need for your multi-pass rendering. Keep in mind that each material graph can be slightly modified in a number of ways and compiled down to a bunch of different shaders.
Not Just for Color

Most of the examples in this document focus on lighting models and generally messing with pixel color, however please keep in mind that ESL draws very little difference between the final position and final color computations; so everything about modularity, shader graphs and whatnot can be used just as well to do complex vertex transformations and skinning as it can color transformations. New attributes can easily be declared and used for skinning, time based or procedural mutation, and so forth.

Annotations on Output

The HLSL target for the ESL compiler adds numerous annotations onto all shader inputs so that the user can easily see which property and graph instance each constant is derived from in ESL (just export a shader from the ESL Designer and you’ll easily be able to match up the constants to the shader nodes). In this way, using the FX framework it is fairly easy to write code in ESL and interact with those constants at runtime. Additionally the compiler can add more annotations so that the FX file can be used in a standard shader based editor (like FX Composer, or the DirectX Material plug-ins for 3ds Max and Maya). Thus allowing you to write your shader code in ESL, and then use the compiled shader as you would any normal FX shader. When exporting from one of these FX based editors it would be easy to extract the constant values and then use ESL to compile different shaders for your game using those values. In this way you get the flexibility of ESL and the general acceptance of FX. Ideally however, the game exports would export an ESL material graph rather than go through FX which applied many restrictions on the shader.
Render States

Like multi-pass rendering, ESL considers render state management to be primarily managed by the game itself, and shaders are there as sort of just another render state. However it does support some basic state management and more could be easily added. In the “IMaterial” definition, along with adding the abstract “FinalColor” and “FinalPosition” declarations it also declares “bool EnableBlending = false;”, this property is used by the HLSL target and if overridden and set to true will enable blending in the output “technique”. Currently it is required to be “fixed” in that it must be known at compile time.

floatN

This is purely a convenience for me, when declaring the HLSL intrinsics I found that most of them applied to any vector length. For this reason, I’ve added a sort of “macro” to the language which allows you to specify “floatN” as an argument and return type. Doing so will internally create four different properties (one each for “float”, “float2”, “float3” and “float4”). For example, this is the declaration of “lerp” from System.esl:

sealed extern floatN lerp(floatN a, floatN b, floatN s);

This will create four different versions of this property which matching float values. “floatN” is also only allowed as a return type if at least one of the arguments is of that type. Using “floatN” as a return type or in a function which doesn’t have it as one of it’s arguments will cause a compile error. Also note that the “floatNV” type can be used and will be treated in the same way as “floatN” except it will not include “float” (only “float2”, “float3” and “float4”).

sealed extern floatNV cross(floatNV a, floatNV b);

You can use either of these in your own code, but I don’t imagine it will be too common.
Performance and Optimization

Performance in ESL was designed around two primary areas: firstly how well can the ESL compiler generate efficient HLSL which does everything specified in the high level ESL code; and secondly how easily can a game or engine developer write good shader code and how easily can they do performance exploration (trying different rendering techniques) and optimize their code based on their findings. This section will cover both of these aspects and how they work together.

From the compiler efficiency stand point (the term “efficiency” will refer to the efficiency of the final generated shader code, not the efficiency of the compiler itself, which is assumed to be moderately slow and an offline process anyway), ESL was specifically designed to be easily compiled into HLSL. By “easily” I mean that any higher level constructs such as objects, arrays and such would have a simple representation in the final shader and generally compile out. It is my firm belief that a lot of a languages performance comes from the programmer being able easily predict what exactly will happen as they write any particular piece of code. Most decent programmers can fairly easily write C++ code with classes that runs just as quickly as a C struct based implementation because they understand what is happening internally (there are of course numerous differences between the two, but most of the code will run at about the same speed). Shading languages are a little more complex in this manner because function calls aren’t actually function calls and so the programmer has to be more aware as to what is happening. With this in mind, I believe it is fairly apparent how the large amount of object and function overhead in ESL completely vanishes once you lock down the type and interrelations of all objects. I firmly believe that ESL, if used moderately well will generate shader code just as efficient as if written directly in HLSL. Not to mention that your code will be much easier to read and far more modular.

Optimization on the other hand is the process of improving the overall performance of the game or application once you have it going, in this case with a focus on rendering. Assuming that your performance is roughly similar between HLSL and ESL, the question is then what could ESL do to help you optimize your code. Primarily I see the advantage of ESL in performance exploration; because your shader is separated into logical components (i.e. something like the GameShader example where diffuse, normal, specular and so forth are separated) you can easily write small modifiers which test some particular part of the shader. For instance if you wanted to just look at the specular and see how much of the performance is eaten up by that code, you’d do something like this:
modifier Exp_OnlySpecular extends Eng_PrePass {

override float4 FinalColor = Specular;

}

Easy to write, and easy to add to your shader graph; this lets you test out separate sections of the shader; something that requires a fair degree of forethought and a lot more work to support in HLSL. Note only can you separate out and work on a particular parts of a shader, but you can even completely rewrite the way different sections of the code work. From switching between normal-mapping and vertex normals, to swapping out procedural for sampled textures, ESL allows flexibility in the shaders from the engine level which is exactly what you need to do performance exploration.

In modern hardware systems with massive programmable graphics pipelines and multiple processors all crunching at the same time, true performance optimization will not come from simply dropping the instruction count but rather from large scale reorganizations of how the rendering is done. Switching between multi-pass and single pass systems, batching different shaders into massive groups, accessing memory in different patterns to utilize the cache, and generally mutating the shader code to implement new lighting models or simplification techniques is the key to finding which combinations will give the greatest performance. This process requires constantly rewriting parts of the shaders, and really only works best when using real game content (measuring test content can often lead to false impressions). This would require huge amounts of works to modify each current generation shader, or a few lines of ESL code applied to all materials at build time. For this reason I believe a system like ESL is an absolute must for large scale shader development.

Shader Analysis and Automatic Optimization

“Optimization without measurement is just guessing.” – Anonymous?

The ESL compiler is in a particularly good position to offer hints, statistics and insights into your compiled shader and code which can be of great use to the engine and game developers. Most of these “hints” can be inferred from the shader code using simple patterns during compilation. An example would be if you are using a diffuse color texture and a specular shininess texture, the compiler can spot that these are being accessed at the same location and thus could be packed into a single texture (color=rgb, specular=a), saving a texture slot and a texture read.

More advanced patterns could indicate which instructions and functions are causing stage separation and where these separations are happening. For example switching to a normal map would cause a lot of the lighting code to be moved into the pixel shader, and this can be easily identified and reported to the compiler user as one reason why there are more instructions in the pixel shader. Additionally it can specify where and why each of the interpolated values between the pixel and vertex shaders are defined.

These hints would be included either as a separate XML file, or embedded into the output shader file (in comments) for use in game engines. The hints could then be analyzed and possibly the shader and related resources rewritten for a better result. For instance in the case of two textures being accessed at the same time, the two texture resources would be packed together and the shader updated to know this. Thus artists could create numerous textures for different properties of the material and the engine could automatically and optimally pack them together. Alternately, performance hints such as the normal mapping affecting too much of the lighting code would be identified and possibly the model normal used for less precise lights. Presumably the engine would have predefined code to notice known issues that the ESL compiler can pinpoint (such as the “Normal” property causing a lot of pixel instructions), and have custom code to account for that. Engines will always have to have specialized code to optimize certain situations, ESL just makes these critical points easier to identify and easier to fix through more flexible shader generation.

Because ESL is a high level language it will mean that in some sense the developers have less control over the exact code generated. The side effects of this I think can be countered with a decent hinting system to aid the engine in rewriting and remolding the shaders and content to work together. Current generation languages cannot offer this kind of information because they lack a high level code representation and even if they did point out that some piece was sub-optimal, any changes would have to be made by hand, couldn’t be automated and thus couldn’t be fully integrated.

Other examples of easily identifiable “hintable” items are:

· If multiple materials access different textures, and are “combined” to create a single shader, the compiler could identify that only one of these textures is ever used at a time and thus they could all be put into one larger texture and read using one texture load with UV cropping. The example would be four objects in a scene, each with a different diffuse texture could be identified and UV packed, creating one shader which efficiently draws all four using only one texture and one texture lookup (and all of this happing automatically).
· Branching and looping statements could all be identified along with what their arguments are. This would allow the engine to ensure that certain values are calculated in the per-shader to avoid costly branching.
· A list of which properties on a “combined” material required interpolation, which could be accessed using register addressing, and how much code is shared between the combined materials. This will help the engine identify which materials can be combined with other materials for optimal batching.

The Language Design

This section covers a few of the design guidelines and principals used in developing the language. First and foremost the language was designed to be easy to read and write. The general style of C# was used, combined with the basic structure of HLSL, to make an object oriented language which was focused on shaders. This project is a little different than most object oriented languages as the class structure exists only at compile time. While the internal structures may differ any one accustomed to standard object oriented languages shouldn’t have a problem working with ESL code.

The second major design goal was that the language itself encouraged the developer to write good and modular code. The shorthand notation of dropping the “()” on properties without arguments, and using the “= EXPR;” syntax means that developers can write procedural properties in much the same way as they would use a local variable. Consider something like:

float3 Normal = mul(RawNormal, float3x3(ModelViewMatrix));

pshader float3 UnitNormal = normalize(Normal);

Which would otherwise have to be written as such:

float3 Normal()

{

return mul(RawNormal(), float3x3(ModelViewMatrix()));

}

pshader float3 UnitNormal()

{

return normalize(Normal());

}

Both compile to exactly the same thing, but the first lets you think of them more like local variables and doesn’t give you that internal feeling of wasting time calling a function. Often we use local variables inside a function just because it is more convenient than declaring a function, however when we do this we are often losing an opportunity for a later extension and modification. During performance exploration all sorts of changes will need to be made and using more virtual functions makes that possible.

Prototype

Admittedly, the current prototype is a little bit “hacky”, primarily because it is the result of several large language restructurings. But it does implement all the primary features described in this document, and writes some pretty decent shaders. The compiler consists of a C-family tokenizer and language parser (from another one of my projects), and compiles the class definitions from that. It either uses an XML definition of the shader graph, or lets you visual build it using the ESL Designer. This graph is then actually compile into HLSL. The output of the compiler is a “.fx” file which contains annotations as to which shader graph nodes each item is associated with but which is in all regards a standard FX file. The example viewer program which was used to test out the shaders was a standard DirectX application containing no direct references to ESL.

The examples page contains numerous examples of materials and the .fx files generated from them. The compiled shaders are generally almost as efficient as if the equivalent was written in HLSL, with occasionally a few more interpolated values between the vertex and pixel shaders. I’m confident that a proper optimization system could easy reduce even this. Despite all of that, I believe it is usable enough for teams to try it out and get a rough idea of if it suits their needs or not.

Understandably, writing a compiler is a large project, and while I did put a fair amount of hours into it, it was written with the intention of being a prototype not a fully fledged compiler. Despite this, it does have some nice features like pretty good error messages (human readable with line and column numbers), and the generated code is pretty damn efficient in most cases. This however is mostly because of the cleanliness of the ESL language design rather than a proper compiler implementation (that is the language structures created in ESL easily compile out). It will require either a lot more work, a more devoted team of experienced developers to write it properly. A feature like good evaluation tree optimization is not for the weak of heart and most of the current optimization code in the compiler is fairly rudimentary. On the plus side, because ESL compiles to a high level language, it is not responsible for optimizing a huge class of operations and never has to deal with the assembly level representations. For this reason I believe it is actually a fairly practical project for a small team with some experience.

Language-wise the current compiler implementation is written in C# (because it’s an excellent language, especially for prototyping), but ideally I would like the compiler and API written in C++ so that it can be easily linked to from modeling applications (like Max and Maya) or game content build systems.

Regarding target language, the current implementation targets HLSL only, but it is written to support any number of languages, primarily GLSL and Renderman surface shaders. Looking at the ESL language definition it is obvious that has little specific to a particular target language, and there is no reason it shouldn’t compile to either. The Renderman backend (which I’m slowly working on) will not only allow for ESL’s use in high quality scenarios, but will also allow ESL to be integrated as a material type in modeling applications and have it appear correctly in ray-tracing based previewers.
Problems and Concerns

As with any language, ESL has it’s problem areas; this section will cover what I consider to be the primary issues. First and foremost is that ESL isn’t HLSL and thus requires rewriting any existing shaders into this new language. My experience has shown this process to primary consist of refactoring out most of the local variables into separate properties, and breaking the shader into it’s local components (position, lighting, coloring, final color); which is a generally a good thing and makes the code much cleaner, but is still a considerable task. Because ESL is based around HLSL, the translation looks more like refactoring than real translation. Additionally those tools which are built around HLSL can then only be applied to compiled ESL and thus lack full integration with the language.

Secondly in my mind is that ESL is both a new language and a new way to manage shaders. For this reason it requires rethinking and rewriting how your shaders are going to work, how they are going to relate to each other, and how your engine is going to manage them. This is always a complex process but I think it can be taken in steps by first writing the ESL shaders, and then compiling them and using the HLSL in your system normally. Step by step the engine can take more control of the ESL compiler, more control of the shader graph and have less dependence on the HLSL step, until the engine is directly manipulating the ESL shader graph and not even looking at the HLSL. Additionally to fully use ESL the engine should work as a feedback loop rather than a linear progression as it generates shaders, analyses them, adjusts them, and then regenerates them until they are acceptable. This is all obviously a lot of work.

Youth is also a major problem as it is presumed the ESL language and compiler will evolve, grow and have it’s awkward and inefficient aspects ironed out over time. As of yet the system is untested in a production environment, hasn’t really been pushed in terms of scalability, and certainly hasn’t been optimized for real world conditions. While one can plan ahead for these things, software will always prove us wrong to some degree. My only defense in this regard is that I coincidentally had a beard during development of the language, and that seems to help.

Automatic stage separate (between pre, pixel and vertex shaders) is an area that I see as fundamentally necessary for a flexible shader language, but does require a lot of compiler optimization to ensure that it doesn’t result in an explosion of interpolated values. This is a moderately easily definable occurrence and thus we can hope for good results from the compiler, but there are times when it simply cannot give as good results as a human developer. The best solution to this problem is a good compiler team, and good “hinting” to indicate where stage separation occurs and why.

Using HLSL has a target language has both it’s pros and cons. On the plus side it greatly simplifies the compiler and allows a new language to lean on the low level optimization provided by the HLSL compiler. On the other hand, certain constructs such as loops, branches and return statements have to be explicitly transferred into the target language requiring separate HLSL functions which look clumsy and make variable sharing a little complicated. Additionally there are optimizations done at the HLSL level which if done at the ESL level could result in larger optimizations. Theoretically future ESL implementations could compile directly to GPU assembly.

In the case of functions with arguments, the compiler inlines the code; but without arguments the compiler has to choose between inlining the code or creating a new local variable to store it, and then using the value twice. Generally creating the new local variable is best and that is hard coded in the prototype, but there are times when this is not optimal and thus the compiler should be able to spot these. This can occur when say the same function is called from both the pixel and vertex shaders.

Shader combining, discussed earlier, is the process of generating one shader which can represent multiple materials in a single batch (or generally without changing render state). While it’s a cool and important feature, it is also a great source of compiler complexity and optimization difficulty. The compiler must choose between different interpolation methods based on the situation, which is a little difficult. It could perform all paths and then select or lerp between the results, use branching to skip unnecessary code, or use register addressing to pick the right value. All of these have their pros, cons and times of availability, requiring complex pattern recognition and possibly trained optimization to select between.

All of these (and many other) problems sit on top of the issues many game developers have with HLSL being “too high level”. Not to mention that the concept of a shader graph, while widely accepted, is not optimal for all situations (although you could of course just put all your code into one large class). The question eventually falls to the game and engine developer as to whether these difficulties are worth it for the flexibility, manageability and features offered by an ESL based solution.

Project Usage

Because the current implementation is just a prototype, the question becomes what should be done with its findings. I personally see three main possibilities, listed in order of likelihood from possible to personal dream. This is assuming of course that the ideas in this paper are not just thrown out entirely:

At least what I would like to see happening is that a few of the ideas from this project will spread and the concept of a “programmable” shader builder become a reality.

Even better the ESL language itself (or something based on similar principals) could be picked up by some team and written with a proper compiler. I believe there could be a market for a good shader compiler and management tool, and with the right plug-ins it could be quite popular as an alternative to having to write your own shading engine with exporters and so forth. Alternately an open-source or academic team could create a free available tool along the lines of gcc.

Ideally however, I would love to see the principals of ESL become the foundation for the successor to the FX framework (not that there is one yet). While the FX framework is pretty cool, ESL was written specifically to counter the many issues that HLSL has with scaling and flexibility (the principal problem being the overly procedural definition which doesn’t have a clean system like inheritance and modifiers to manipulate the code). Something like the “XFX” or eXtensible FX framework could take the principals of ESL and integrate them into DirectX or larger platform like XNA to clean up the whole shading architecture.

Conclusion

In summary, ESL is an object-oriented, graph based, high level shading language with strong compile time reduction, a syntax similar to C# and HLSL and which compiles to HLSL for low-level optimization and usage in-game. It provides a flexible architecture to manipulate shaders into different forms at build time. It includes language level systems to combine multiple materials into a single shader for rendering more objects in a single batch; and does this all with performance on a par with shaders written directly in HLSL. The language itself could also be targeting for other platforms such as GLSL, Cg, RenderMan and so forth.
Appendix

Rather than include a bunch of code in the language doc, please see the MyShader.esl example classes and a collection of example materials on the ESL website.
Copyright 2006 Lewey Geselowitz
